Let’s hear it from the cities
Die Rolle der erneuerbaren Energien bei der Erreichung der Klimaneutralität in den europäischen StädtenErneuerbare Energiequellen haben sich weltweit als ein wichtiger Hebel zur Gewährleistung der Energiesicherheit und zur Förderung des Klimaschutzes erwiesen. Städte müssen sich die Energiewende zunutze machen, doch wie sie ihre Strategien und Maßnahmen gestalten, ist unklar. Ein Datensatz, der im Rahmen der European 100 Climate-Neutral and Smart Cities Mission erhoben wurde, bietet einen Einblick in die Situation von 362 Städten, die sich zum Ziel gesetzt haben, bis 2030 klimaneutral zu werden. Die Europäische Kommission hat Städte aufgerufen, einen umfassenden Fragebogen zu beantworten, der sich auf ihre bisherigen Klimaschutzmaßnahmen, ihren Status quo in Bezug auf Emissionen sowie ihre Politik, Partnerschaften, Governance und finanzielle Bereitschaft bezieht. Darüber hinaus wurden sie gebeten, ihre Vision für das Erreichen der Klimaneutralität sowie ihre Erwartungen in Bezug auf Nebeneffekte, nachteilige Auswirkungen, Risiken, Hindernisse, Lücken und Unterstützungsbedarf mitzuteilen. Die Antworten zeigen den Grad der Bereitschaft, das Engagement, die Kapazitäten und die Risiken, die im Streben nach einer emissionsfreien und grüneren Zukunft sichtbar werden.
Die Zeitschrift mit dem gesamten Artikel kann online im Shop erworben werden!
Das Literaturverzeichnis zum abgedruckten Text ist hier in gesamtem Umfang nachzulesen.
Giulia Ulpiani ist Projektleiterin am Joint Research Centre der Europäischen Kommission in Ispra, Italien. Sie forscht in den Bereichen nachhaltige Energie- und Klimaschutzplanung, intelligente Steuerungssysteme, Energieeffizienz, Anpassung von städtischen Wärmeinseln sowie fortschrittliche Kühltechnologien und -techniken.
Nadja Vetters arbeitet am Joint Research Centre der Europäischen Kommission in Brüssel. Ihr Fokus liegt auf Energieeffizienz und erneuerbaren Energien. Sie hat Umweltsystemwissenschaften – Economics an der Universität Graz studiert.
Drilona Shtjefni ist Doktorandin an der Amsterdam School for Regional, Transnational and European Studies der Universität Amsterdam. Sie ist spezialisiert auf EU- und internationale Politik sowie Projekt- und Programmmanagement, insbesondere in den Bereichen Energie und Klima.
Georgia Kakoulaki arbeitet am Joint Research Centre der Europäischen Kommission in Ispra. Sie ist Expertin bei der Analyse großer Datensätze und dem Aufbau numerischer Modelle, insbesondere in Bereichen im Zusammenhang mit Klimawandel und Umwelt wie Ökosystemverhalten, Küstenprozesse, Luftqualität und Treibhausgasverfolgung. Ihre Doktorarbeit hat sie an der University of Massachusetts zu Küsten-Hydrodynamiken geschrieben.
Nigel Taylor arbeitet als Projektmanager am Joint Research Centre der Europäischen Kommission in Ispra. Er ist Doktor der Philosophie und hat Werkstofftechnik studiert. Sein Forschungsschwerpunkt liegt auf erneuerbaren Energien.
Allam, Zaheer & Jones, David S. (2021): Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: digital twins, immersive realities and new urban economies. In: Land Use Policy, Vol. 101, 105201. doi.org/10.1016/j.landusepol.2020.105201.
Barja-Martinez, Silvia; Aragües-Peñalba, Marta; Munné-Collado, Ignasi; Lloret-Gallego, Pere; Bullich-Massagué, Eduard & Villafafila-Robles, Rafael (2021): Artificial intelligence techniques for enabling Big Data services in distribution networks: a review. In: Renewable and Sustainable Energy Reviews, Vol. 150, 111459. doi.org/10.1016/j.rser.2021.111459.
Bieda, Agnieszka & Cienciała, Artur (2021): Towards a renewable energy source cadastre—a review of examples from around the world. In: Energies, Vol. 14, No. 23, 8095.
Blonsky, Michael; Nagarajan, Arun; Ghosh, Soumya; McKenna, Kevin; Veda, Santosh & Kroposki, Benjamin (2019): Potential impacts of transportation and building electrification on the grid: a review of electrification projections and their effects on grid infrastructure, operation, and planning. In: Current Sustainable Energy Reports, Vol. 6, No. 4, pp. 169–176. doi.org/10.1007/s40518-019-00140-5.
Cali, Umut; Kuzlu, Mehmet; Pipattanasomporn, Manisa; Elma, Onur & Reddi, Ravi (2021): Cybersecurity of renewable energy data and applications using distributed ledger technology. In: ArXiv Preprint, ArXiv211011354.
Colasante, Andrea; D’Adamo, Idiano & Morone, Piergiuseppe (2022): What drives the solar energy transition? The effect of policies, incentives and behavior in a cross-country comparison. In: Energy Research & Social Science, Vol. 85, 102405. doi.org/10.1016/j.erss.2021.102405.
Cousse, Julia (2021): Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies. In: Renewable and Sustainable Energy Reviews, Vol. 145, 111107. doi.org/10.1016/j.rser.2021.111107.
Croce, Stefano & Vettorato, Daniele (2021): Urban surface uses for climate resilient and sustainable cities: a catalogue of solutions. In: Sustainable Cities and Society, Vol. 75, 103313. doi.org/10.1016/j.scs.2021.103313.
Derkenbaeva, Erkinai; Halleck Vega, Solmaria; Hofstede, Gert Jan & van Leeuwen, Eveline (2022): Positive energy districts: mainstreaming energy transition in urban areas. In: Renewable and Sustainable Energy Reviews, Vol. 153, 111782. doi.org/10.1016/j.rser.2021.111782.
European Commission (2022a): Communication from the commission (2022/C 80/01) 2022 Guidelines on State aid for climate, environmental protection and energy 2022. eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022XC0218(03).
European Commission (2022b): COM/2022/240 final – communication from the commission to the European parliament, the Council, the European economic and social committee and the committee of the regions – EU „save energy“. eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A240%3AFIN.
European Commission (2022c): COM/2022/221 final – communication from the commission to the European parliament, the Council, the European economic and social committee and the committee of the regions – EU solar energy strategy. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A221%3AFIN.
European Commission (2022d): COM/2022/552 final – communication from the commission to the European parliament, the Council, the European economic and social committee and the committee of the regions - digitalising the energy system – EU action plan. eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022DC0552&qid=1666369684560.
Fakhraian, Ehsan; Forment, Miguel Angel; Dalmau, Ferran Vilar; Nameni, Amir & Guerrero, Maria Jose Carretero (2021): Determination of the urban rooftop photovoltaic potential: a state of the art. In: Energy Reports, Vol. 7, pp. 176–185. doi.org/10.1016/j.egyr.2021.06.031.
Fassbender, Elisa; Ludwig, Ferdinand; Hild, Andreas; Auer, Thomas & Hemmerle, Claudia (2022): Designing Transformation: Negotiating Solar and Green Strategies for the sustainable densification of urban neighbourhoods. In: Sustainability, Vol. 14, No. 6, 3438. doi.org/10.3390/su14063438.
Ferré-Bigorra, Jordi; Casals, Miquel & Gangolells, Marta (2022): The adoption of urban digital twins. In: Cities, Vol. 131, 103905. doi.org/10.1016/j.cities.2022.103905.
Fleischhacker, Andreas; Corinaldesi, Chiara; Lettner, Georg; Auer, Hans & Botterud, Audun (2022): Stabilizing energy communities through energy pricing or PV expansion. In: IEEE Transactions on Smart Grid, Vol. 13, No. 1, pp. 728–737. doi.org/10.1109/TSG.2021.3121283.
Gabrielli, Paolo; Poluzzi, Alessandro; Kramer, Gert Jan; Spiers, Chris; Mazzotti, Marco & Gazzani, Matteo (2020): Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage. In: Renewable and Sustainable Energy Reviews, Vol. 121, 109629. doi.org/10.1016/j.rser.2019.109629.
Heffron, Raphael; Halbrügge, Stephanie; Körner, Marc-Fabian; Obeng-Darko, Nana Asare; Sumarno, Theresia; Wagner, Jonathan et al. (2021): Justice in solar energy development. In: Solar Energy, Vol. 218, pp. 68–75.
Inal, Osman Burak; Charpentier, Jean-Frédéric & Deniz, Cengiz (2022): Hybrid power and propulsion systems for ships: current status and future challenges. In: Renewable and Sustainable Energy Reviews, Vol. 156, 111965. doi.org/10.1016/j.rser.2021.111965.
IRENA (n. d.): SolarCity Simulator. www.irena.org/Energy-Transition/Project-Facilitation/Renewable-potential-assessment/SolarCity-Simulator.
Izam, Nur Shahirah; Itam, Zarina; Sing, Wong Leong & Syamsir, Agusril (2022): Sustainable development perspectives of solar energy technologies with focus on solar photovoltaic – a review. In: Energies, Vol. 15, No. 8, 2790. doi.org/10.3390/en15082790.
Jodeiri, Ali Moallemi; Goldsworthy, Mark J.; Buffa, Sara & Cozzini, Marco (2022): Role of sustainable heat sources in transition towards fourth generation district heating – a review. In: Renewable and Sustainable Energy Reviews, Vol. 158, 112156. doi.org/10.1016/j.rser.2022.112156.
Koasidis, Konstantinos; Nikas, Alexandros; Neofytou, Haris; Karamaneas, Anastasios; Gambhir, Ajay; Wachsmuth, Jakob et al. (2020): The UK and German low-carbon industry transitions from a sectoral innovation and system failures perspective. In: Energies, Vol. 13, No. 19, 4994. doi.org/10.3390/en13194994.
Korniejenko, Kinga; Kozub, Barbara; Bąk, Agnieszka; Balamurugan, Prabhu; Uthayakumar, Muthuramalingam & Furtos, Gabriel (2021): Tackling the circular economy challenges—composites recycling: used tyres, wind turbine blades, and solar panels. In: Journal of Composites Science, Vol. 5, No. 9, 243.
Kroposki, Benjamin; Johnson, Brian; Zhang, Yingchen; Gevorgian, Vahan; Denholm, Paul; Hodge, Bri-Mathias et al. (2017): Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy. In: IEEE Power and Energy Magazine, Vol. 15, No. 2, pp. 61–73. doi.org/10.1109/MPE.2016.2637122.
Kubli, Merla (2018): Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers. In: Energy Policy, Vol. 114, pp. 173–188.
Lazdins, Roberts; Mutule, Anna & Zalostiba, Diana (2021): PV energy communities—challenges and barriers from a consumer perspective: a literature review. In: Energies, Vol. 14, No. 16, 4873. doi.org/10.3390/en14164873.
Liu, Chunlu; Yang, Rui J.; Yu, Xinxin; Sun, Chao; Wong, Philip S. P. & Zhao, Hongwei (2021): Virtual power plants for a sustainable urban future. In: Sustainable Cities and Society, Vol. 65, 102640. doi.org/10.1016/j.scs.2020.102640.
Luderer, Gunnar; Madeddu, Sara; Merfort, Lukas; Ueckerdt, Florian; Pehl, Michaja; Pietzcker, Robert et al. (2022): Impact of declining renewable energy costs on electrification in low-emission scenarios. In: Nature Energy, Vol. 7, pp. 32–42. doi.org/10.1038/s41560-021-00937-z.
Lyden, Anna; Brown, Craig Stephen; Kolo, Ibrahim; Falcone, Gioia & Friedrich, Daniel (2022): Seasonal thermal energy storage in smart energy systems: district-level applications and modelling approaches. In: Renewable and Sustainable Energy Reviews, Vol. 167, 112760. doi.org/10.1016/j.rser.2022.112760.
Makolo, Phineas; Zamora, Ramon & Lie, Tek-Tjing (2021): The role of inertia for grid flexibility under high penetration of variable renewables – A review of challenges and solutions. In: Renewable and Sustainable Energy Reviews, Vol. 147, 111223.
Marami, Hossein; He, Liang; Rafiee, Shahin; Khoshnevisan, Benyamin; Tsapekos, Panagiotis; Mobli, Hossein et al. (2022): Bridging to circular bioeconomy through a novel biorefinery platform on a wastewater treatment plant. In: Renewable and Sustainable Energy Reviews, Vol. 154, 111895. doi.org/10.1016/j.rser.2021.111895.
Mathur, Nupur; Singh, Shitij & Sutherland, John W. (2020): Promoting a circular economy in the solar photovoltaic industry using life cycle symbiosis. In: Resources, Conservation and Recycling, Vol. 155, 104649.
Meunier, Simon; Protopapadaki, Christina; Baetens, Ruben & Saelens, Dirk (2021): Impact of residential low-carbon technologies on low-voltage grid reinforcements. In: Applied Energy, Vol. 297, 117057. doi.org/10.1016/j.apenergy.2021.117057.
Mook, Wei Ting; Aroua, Mohamed Kheireddine & Issabayeva, Gulnaziya (2014): Prospective applications of renewable energy based electrochemical systems in wastewater treatment: a review. In: Renewable and Sustainable Energy Reviews, Vol. 38, pp. 36–46. doi.org/10.1016/j.rser.2014.05.042.
Naderipour, Amirreza; Abdul-Malek, Zulkurnain; Arshad, Reza Nasiri; Kamyab, Hesam; Chelliapan, Shreeshivadasan; Ashokkumar, Veeramuthu et al. (2021): Assessment of carbon footprint from transportation, electricity, water, and waste generation: towards utilisation of renewable energy sources. In: Clean Technologies and Environmental Policy, Vol. 23, pp. 183–201. doi.org/10.1007/s10098-020-02017-4.
Qureshi, Faisal; Yusuf, Muhammad; Kamyab, Hesam; Vo, Dai-Viet N.; Chelliapan, Shreeshivadasan; Joo, Sang-Woo et al. (2022): Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: currents challenges, innovative insights, and future perspectives. In: Renewable and Sustainable Energy Reviews, Vol. 168, 112916. doi.org/10.1016/j.rser.2022.112916.
Saad, Ahmed; Faddel, Sameh; Youssef, Tamer & Mohammed, Osama A. (2020): On the implementation of IoT-based digital twin for networked microgrids resiliency against cyber attacks. In: IEEE Transactions on Smart Grid, Vol. 11, No. 5, pp. 5138–5150. doi.org/10.1109/TSG.2020.3000958.
Schuelke-Leech, Beth-Anne; Barry, Ben; Muratori, Matteo & Yurkovich, Benjamin J. (2015): Big Data issues and opportunities for electric utilities. In: Renewable and Sustainable Energy Reviews, Vol. 52, pp. 937–947. doi.org/10.1016/j.rser.2015.07.128.
Su, Yujie; Hiltunen, Petri; Syri, Sanna & Khatiwada, Dilip (2022): Decarbonization strategies of Helsinki metropolitan area district heat companies. In: Renew Sustain Energy Rev 2022; 112274:160. doi.org/10.1016/j.rser.2022.112274.
Taylor, Nigel; Szabo, Szilard; Kona, Andrea; Melica, Giulia; Huld, Thomas; Jaeger-Waldau, Arnulf & Ossenbrink, Hans (2015): Deployment pathways for photovoltaics in the EU towards 2020: comparing economic factors with policies at municipal level. In: Proceedings EUPVSEC 2015, WIP – ETA Florence (Organiser), Munich (Germany): WIP, pp. 3034–3041. doi.org/10.4229/EUPVSEC20152015-7DO.15.2.
Thebault, Maxime; Berrah, Laure-Anne; Desthieux, Gilles & Ménézo, Christophe (2019): Towards a solar cadastre for the monitoring of solar energy urban deployment: the case of Geneva. In: Proceedings of the ISES Solar World Congress 2019, pp. 2497–2505.
Tronchin, Lamberto; Manfren, Massimiliano & Nastasi, Benedetto (2018): Energy efficiency, demand side management and energy storage technologies – a critical analysis of possible paths of integration in the built environment. In: Renewable and Sustainable Energy Reviews, Vol. 95, pp. 341–353. doi.org/10.1016/j.rser.2018.06.060.
Yang, Qingxin; Yang, Tao & Li, Wei (2020): Renewable energy microgeneration systems. Customer-led energy transition to make a sustainable world. Academic Press.
Yap, Koon Yaw; Chin, Hwai Hwa & Klemeš, Jiří Jaromír (2022a): Solar Energy-Powered Battery Electric Vehicle charging stations: current development and future prospect review. In: Renewable and Sustainable Energy Reviews, Vol. 169, 112862 doi.org/10.1016/j.rser.2022.112862.
Yap, Koon Yaw; Chin, Hwai Hwa & Klemeš, Jiří Jaromír (2022b): Future outlook on 6G technology for renewable energy sources (RES). In: Renewable and Sustainable Energy Reviews, Vol. 167, 112722.doi.org/10.1016/j.rser.2022.112722.
Zaffar Tak, Shafat; Kumar Garg, Vikas & Sharma, Sanjay (2018): Incorporation of renewable distributed micro-generation technologies in power sector using microgrids. In: International Journal of Computer Intelligence and IoT, Vol. 1.
Zhang, Shuang; Ocłoń, Paweł; Klemeš, Jiří Jaromír; Michorczyk, Piotr; Pielichowska, Kinga & Pielichowski, Krzysztof (2022): Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. In: Renewable and Sustainable Energy Reviews, Vol. 165, 112560. doi.org/10.1016/j.rser.2022.112560.